
A Kconfig Translation to Logic with One-Way Validation System
David Fernandez-Amoros

UNED
Madrid, Spain

david@issi.uned.es

Ruben Heradio
UNED

Madrid, Spain
rheradio@issi.uned.es

Christoph Mayr-Dorn
JKU Institute for Software Systems Engineering, Johannes

Kepler University
Linz, Austria

christoph.mayr-dorn@jku.at

Alexander Egyed
JKU Institute for Software Systems Engineering, Johannes

Kepler University
Linz, Austria

alexander.egyed@jku.at

ABSTRACT
Automated analysis of variability models is crucial for managing
software system variants, customized for different market segments
or contexts of use. As most approaches for automated analysis are
built upon logic engines, they require having a Boolean logic trans-
lation of the variability models. However, the translation of some
significant languages to Boolean logic is remarkably non-trivial.
The contribution of this paper is twofold: first, a translation of
the Kconfig language is presented; second, an approach to test the
translation for any given model is provided. The proposed trans-
lation has been empirically tested with the introduced validation
procedure on five open-source projects.
ACM Reference Format:
David Fernandez-Amoros, RubenHeradio, ChristophMayr-Dorn, andAlexan-
der Egyed. 2019. A Kconfig Translation to Logic with One-Way Validation
System. In 23rd International Systems and Software Product Line Conference -
Volume A (SPLC ’19), September 9–13, 2019, Paris, France. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3336294.3336313

1 INTRODUCTION
The creation of system variants is essential in software engineering
paradigms: software product lines, software ecosystems, context-
aware software, etc. In such paradigms, Variability Models (VMs)
are frequently used to account for the configurable features of the
variants.

Automated analysis of VMs has a long history[4, 18, 19]. For
instance, to detect whether a model instance (also known as product
or configuration) is valid [1–3, 10, 16, 20, 23, 24, 30, 36, 38, 40]
(i.e. it does not violate any inter-feature constraints); to provide
explanations about the causes that make an instance invalid in

This work has been supported by (i) the Spanish Ministry of Education and Vocational
Training under the projects with reference DPI2016-77677-P and CAS17/00022, (ii)
the Austrian Science Fund (FWF): P29415-NBL funded by the Government of Upper
Austria; and (iii) Pro2Future: FFG, Contract No. 854184.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’19, September 9–13, 2019, Paris, France
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7138-4/19/09. . . $15.00
https://doi.org/10.1145/3336294.3336313

order to guide the user to solve the problem [1, 3, 8, 12, 13, 20, 30,
33, 34, 38, 42]; to detect dead features in the model (i.e. features that
cannot be part of any valid instance) [8, 12, 13, 20, 25, 26, 33, 34, 39,
41, 42, 44, 45], etc.

A common approach for VM analysis is translating the model
into a Boolean formula, which is then processed with a logic engine.
For some VM languages, such as feature models, the translation to
logic is straightforward [3]. However, the translation of the Kconfig
language has not been adequately described. Several attempts have
beenmade to translate Kconfig code to Boolean logic[5, 6, 14, 21, 27–
29, 37, 43].

A Kconfig translation is challenging for twomajor reasons: first, a
formal specification of the KConfig language does not exist, only the
various versions of the kconfig-language.txt1 file. Second, the
translation requires a paradigm shift from imperative to logic: Using
the conf application, an application engineer can configure the
software project. The feature values are variables that can change
from one value to another for as long as the configuration process
lasts (e.g., a feature with a false value may change to true later
when a select clause for another feature is evaluated). This is in
contrast to propositional variables which can only have one value
in a particular configuration. This paper provides the following two
contributions to research on VM analysis:
(1) A translation fromKconfig to logicwhich is complete for Boolean

configs. The translation supports language features that have
been omitted in some of the related work, such as: chaining,
visibility conditions, user prompts, default values, etc. Also, no
artificial variables are added in the translation.

(2) Empirical validation of the translation on five real-world projects.

2 INTRODUCING KCONFIG
This section provides a walkthrough of the main features of the
Kconfig language with an emphasis on their role in the translation
process to Boolean logic.

Configs and symbols. Figure 1 provides an example of the
configuration file for the embedded OS of a hypothetical multimedia
device. Kconfig deals with configs. A config is a declaration of a
symbol (e.g., HAVE_WIFI on line 1) with a type (e.g., bool on line 2)
and other attributes. The type restricts the possible values available
for a symbol. A symbol can be declared multiple times (usually with
different attributes) in different configs, as long as the type is the
1https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt

https://doi.org/10.1145/3336294.3336313
https://doi.org/10.1145/3336294.3336313

SPLC ’19, September 9–13, 2019, Paris, France David Fernandez-Amoros, Ruben Heradio, Christoph Mayr-Dorn, and Alexander Egyed

same. In Figure 1, for example, USE_CUDA is declared three times
(lines 60, 66 and 71).
1 c on f i g HAVE_WIFI
2 boo l
3 d e f a u l t n
4
5 c on f i g STREAMING
6 boo l " S t reaming ? "
7 s e l e c t WIFI
8
9 c on f i g USB
10 boo l " Use USB ? "
11
12 c on f i g WIFI
13 boo l " Use Wif i ? "
14 i f HAVE_WIFI
15 d e f a u l t n
16
17 c on f i g WPA
18 boo l " Use WPA? "
19 depends on WIFI
20 d e f a u l t y
21
22 c on f i g WEP
23 boo l
24 d e f a u l t n i f WPA2
25 d e f a u l t y
26
27 menu " Compi ler "
28 v i s i b l e i f EXPERT
29 depends on DEVEL
30 c on f i g GCC
31 boo l " Use GCC? "
32
33 c on f i g CLANG
34 boo l
35 d e f a u l t !GCC
36 endmenu
37
38
39 c on f i g PROFILE

40 boo l " P r o f i l e ? "
41
42 c on f i g TWEAK
43 boo l " Tweak ? "
44 d e f a u l t y
45 s e l e c t PROFILE
46 i f KEYBOARD
47
48 cho i c e
49 depends on PROFILE
50 prompt "USER "
51 c on f i g STANDARD
52 boo l " S t anda rd "
53 c on f i g ADVANCED
54 boo l " Advanced "
55 c on f i g EXPERT
56 boo l " Expe r t "
57 endcho i c e
58
59 i f EXPERT
60 c on f i g USE_CUDA
61 boo l " USE CUDA? "
62 end− i f
63
64 i f ADVANCED &&
65 HAVE_CUDA
66 c on f i g USE_CUDA
67 boo l " USE CUDA? "
68 d e f a u l t n
69 end− i f
70
71 c on f i g USE_CUDA
72 boo l
73 d e f a u l t n
74
75 i f HAVE_WIFI
76 sou r c e " Conf ig . i n "
77 end− i f

Figure 1: Example Kconfig file
Symbol types. There are four types of configs in the projects

evaluated: bool, string, int, and hex. Bool configs may have n and
y values to represent logic false and true. A common use of string
configs is to hold the string value of a set of related Boolean configs.
The types int and hex are essentially equal to string. For space
limitations, this paper will consider only bool configs. In the projects
evaluated, no string-like types were used inside the bool configs,
which means that the translation is complete for these configs.

User input. Configs may specify a prompt to obtain a value
from the user. On line 6, the text Streaming? is displayed and a
value for STREAMING is requested from the user. The prompt may
be guarded by a Boolean expression (e.g. lines 13-14). When the
expression evaluates to false, the text is not shown and the user
input is not requested. If HAVE_WIFI is false or unassigned, the
default value of “n” will be assigned to WIFI.

Default values may be specified for a config. In combination
with a prompt, the default value is shown as a suggestion to the
user. Without a usable prompt (e.g., lines 22-25) the config takes
the default value if one exists. If there is no default value, the sym-
bol remains unassigned. A later redeclaration of the same symbol
may provide a value for it, in the meantime, logical expressions
containing an unassigned value evaluate to false. A default clause
consists of a value and an optional Boolean expression (e.g., line
24). If there is more than one default clause, they are evaluated in
order. Symbol WEP in line 25 has no prompt, so default clauses are
employed. If WPA2 is false, the WEP is assigned true. Otherwise, it
is assigned true.

Direct dependencies, menus, and if blocks. A config decla-
ration may have direct dependencies; a dependency is a Boolean
expression which must be satisfied in order for the config to be
evaluated. If the dependency of a config does not hold, the rest of

the declaration is ignored. For example, the config WPA is only
evaluated when WIFI is true. A menu is a mechanism for grouping
related configs (lines 27-36). It allows imposing dependencies to
a group of configs at once. A config inside a menu inherits the
dependencies of the menu. Menus may be nested and thus inherit
the dependencies from their respective parents.

Visibility conditions further constraint menu evaluation. The
visibility condition acts as menu-wide guard to prompts; instead
of adding the guard to each individual prompt, it is specified at
the menu level. In the “Compiler” menu, both GCC and CLANG
depend on DEVEL. Also, the prompt for GCC is not shown unless
EXPERT is true. Another way to add dependencies to a group of
configs is through use of an if-block. It takes a condition and adds
it as an additional dependency to the declarations (configs, menus,
choices and other if-blocks) inside the block. In line 59, USE_CUDA
is inside an if-block with EXPERT as condition, which is equivalent
to having a “depends on EXPERT” clause.

Reverse dependencies. A Boolean config may declare reverse
dependencies through the use of the select construction (e.g. line
7). If the config dependencies are met, the symbol (the selector,
here STREAMING) logically implies another one (the selected, here
WIFI, so that, if the selector is true, the selected has to be true
as well. When the select clause is guarded by an expression (e.g.
lines 45-46), the selector and the condition imply the selected. In
our example, when TWEAK and KEYBOARD are true, PROFILE is
assigned “y”, regardless of the previous value.

Choices. This construct enables grouping a set of dependencies
and config declarations out of which only exactly one config may
become true while the rest become false (lines 48-57). If the depen-
dencies do not hold (line 49), then all the choice members are set
to false. The choice construction contains config declarations and
may also include if-blocks. In the example, if PROFILE is true, the
user is asked to choose a value among STANDARD, ADVANCED
or EXPERT.

Importing Kconfig files. Finally, Kconfig enables including
another Kconfig file via the source construction (e.g. line 76). If it is
inside a menu or if-block, the source will inherit the corresponding
dependencies. A source command with unmet dependencies is
ignored during the configuration process, i.e. the source file is not
included.

3 CLARIFYING KCONFIG SEMANTICS
The Kconfig interpreter requires configuration files with correct
syntax, although developers often produce incorrect Kconfig code
because of false assumptions [17].

Kconfig semantics, however, is primarily defined by what the
interpreter accepts as correct. The kconfig-language.txt file is
insufficient for translating Kconfig to Boolean logic. In the follow-
ing subsection we describe aspects that have been incorrectly or
incompletely described before, that have convoluted semantics, or
that tend to lead to incorrect configurations.

3.1 Config chaining
Kconfig files typically declare some symbol several times. A new
declaration of the same symbol (e.g., lines 59-73 in Fig. 1) does not
override the previous one. The interpreter evaluates configurations

A Kconfig Translation to Logic with One-Way Validation System SPLC ’19, September 9–13, 2019, Paris, France

of the same symbol in order. Every symbol starts outs unassigned.
Configs of unassigned symbols are evaluated. A config will provide
no value for the symbol if either a) its dependencies are not met or b)
there is no productive prompt and no productive default (i.e. there
are none or they are guarded by conditions that evaluate to false).
Instead, the interpreter checks successive declarations of the same
symbol as long as it has no value assigned. Once a symbol obtains
an assignment (i.e. true or false) all remaining redeclarations are
ignored. We coined the term chaining to account for this very usual
behavior.

3.2 Decision overriding with Select
The dependencies of a selected symbol are not evaluated. It is
thus possible to set to true a symbol whose dependencies do not
hold. The use of the select construction is discouraged because it
has the potential to produce wrong configurations, bypassing the
dependency mechanism. This usage is referred to as heavy-handed
select. Lines 39-46 in Figure 1 provide an example.
1 c on f i g H
2 boo l " Prompt "
3 s e l e c t A i f !C
4 c on f i g J
5 boo l
6 d e f a u l t y
7 s e l e c t D i f X
8 c on f i g J
9 boo l " Prompt "
10 depends on X

11 s e l e c t H
12 c on f i g ZA
13 boo l "ZA? "
14 s e l e c t ZB
15 c on f i g ZB
16 boo l "ZB ? "
17 depends on X
18 s e l e c t ZC
19 c on f i g ZC
20 boo l

Figure 2: Convoluted select clauses
3.3 Select in chained configs
The interpreter evaluates select statements even in configurations
that are not evaluated. The configuration of symbol J in lines 4 to
7 in Figure 2 leads to an assignment of true. While the config of
J in lines 8-11 is not evaluated because J is already assigned, the
interpreter will nevertheless select H (line 1) if X is true (line 7).
The reason is that the interpreter stores select clauses as reverse
dependencies of the selected symbols.

3.4 Select transitiveness
The documentation is unclear w.r.t. transitivity of select clauses:
if ZA selects symbol ZB and ZB selects symbol ZC in Figure 2,
does this imply that if ZA is true, then ZC is also true? The answer
depends on whether ZB’s dependencies are met. The interpreter
stores the selector, the dependencies of the config and the optional
guard as attributes of the selected. This way, a select clause is only
triggered if the dependencies of the selector are true.

4 RELATEDWORK
One of the first studies of variability models extracted from the
Linux kernel was carried out by She et al. [27–29]. The formalism
employed uses denotational semantics. There is no translation to
logic and no validation attempt is made. She et al. describe the
formalism as incomplete since some “corner cases” are not modeled.
The only hint as to what are considered corner cases is heavy-
handed select. Config declarations are not checked for redeclara-
tions, so chaining of configs is not even considered. This formalism
was apparently the source of the translation used by Berger et al.
in [5, 6] where a catalog of software system projects was assembled
as defined in Kconfig and eCos files, dubbed “Variability Models in

the Wild”. Again no empirical validation of the translation seems
to have been performed. There are no details of the translation, al-
though configs are treated separately, so chaining does not seem to
be implemented. The models make heavy use of artificial variables,
such as those used in the Tseitin construction [35] to transform a
formula to CNF.

Tartler et al. [31, 32] adapt the Linux Variability Analysis Tool
(LVAT)2 from She to extract variability models from both Kconfig
and code artifacts with the purpose of detecting and repairing
inconsistencies between them.

Zengler and Küchlin [43] go a step further and present an en-
coding into Boolean logic that they illustrate only for the Linux
kernel. Their model is updated in [37]. The translation is incomplete;
prompts, visibility conditions, and default values are not consid-
ered. No experimental validation of the translation is presented.
The translation is used to find dead and core features; however
chaining is not considered.

In [14], another translation is presented. It is only for Boolean
configs and lacks both chaining and validation. The translation is
used to build BDDs representing the model.

A thorough experimental revision of the semantics of the Kconfig
language is presented in [11]. Nowhere is the issue of chaining
mentioned. Neither is the need to add the dependencies of a selector
to translate a select clause.

KconfigReader is a tool that translates Kconfig files to Boolean
logic. To date, it is the translation covering the most of the Kconfig
language. In [21], the validation approach of KconfigReader is de-
scribed. The translation itself is not explained. The tools can also
perform brute-force validation of very small snippets of code using
the official conf interpreter capabilities. It provides a useful reposi-
tory of test cases, some randomly generated and some taken from
previous research. Two limitations are mentioned, though: Limita-
tions regarding reverse dependencies and the inability to decide the
validity of configurations using string values not mentioned in the
kconfig code. The command-line interpreter conf allows checking
configurations through command-line options. The process can be
summarised as follows: If present, a file containing symbol values
from a previous configuration is read, then the configuration pro-
cess begins. User input is never requested, the values read from
the file are used instead. These values may still change (e.g., due
to select clauses). When the configuration is finished, the symbol
values are written back to the file. Kästner uses this mechanism as
an oracle: Every possible combination for the values is generated
and written to a file. The interpreter is then invoked on the file. At
the end, the file is checked for changes. If the file has not changed,
the values are correct, otherwise the values are not valid. Kconfi-
gReader includes a repository of test cases, unfortunately, chaining
is not even tested. The tool is complete and correct according to our
evaluation, although it introduces artificial variables that obscure
the meaning.

5 TRANSLATION TO BOOLEAN LOGIC
We extended the original parser to extract a set of additional at-
tributes for each declaration: To propagate dependencies and visibil-
ity conditions, the parser keeps a stack of open commands (if block,

2https://github.com/matachi/linux-variability-analysis-tools.exconfig

SPLC ’19, September 9–13, 2019, Paris, France David Fernandez-Amoros, Ruben Heradio, Christoph Mayr-Dorn, and Alexander Egyed

menu, choice) so when a config is declared, the top of the stack is
checked and the corresponding attributes inherited. The translation
presented here relies heavily on the “if-then-else” construction. Of
course, “if A then B else C” can still be considered as a shorthand
for the more Boolean logic-looking (¬A ∨ B) ∧ (A ∨C).

5.1 Config translation
For the translation of bool configs, one Boolean variable with the
same name is used. To distinguish different configs of the same sym-
bol a subindex may be used. During the parsing of the Kconfig files,
a series of attributes for each declaration are compiled. For a con-
fig FOOi a series of syntactic expressions from the parsing phase
is derived: FOOi .dep, FOOi .vis, Xi .prompt, FOOi .promptGuard,
standing for the dependencies of config FOOi , the visibility con-
dition of FOOi , a Boolean value indicating if there is a prompt in
the declaration or not, and the expression guarding the prompt
(true if there is none), respectively. The system also keeps track of
which config selects which symbol for later use. The translation is
composed of the following steps: The first piece to put together for
each config is a logic formula for the default value. Consider this
config:

config FOOi
default Vi1 if Ci1
default Vi2 if Ci2
. . .

default Vini if Cini

and let us define:

FOOi .default ≡
if Ci1 then Vi1 else
if Ci2 then Vi2 else
. . .

if Cini then Vini
The second aspect to consider is whether the config is selected

by another config or not. As mentioned in the previous section,
a select clause requires that the selector dependencies are met to
activate the selected symbol. So first, a list of selectors is needed,
together with their respective dependencies and optional guarding
expressions. For k ∈ {1..mFOO}, let that be:
config SELECTORk
bool . . .
select FOO if GUARDk

Let us define a formula for later use:

FOO.selectCondition ≡∧mFOO
k=1 SELECTORk .dep ∧ SELECTORk ∧ GUARDk

Let us now consider the user input. If it is going to be requested,
any value is possible for the symbol and nothing else needs to
be done. In contrast, if user input is not requested, then each
configFOOi is checked for usable default values until a value is com-
puted for the symbol or there are nomore configs. For a configFOOi
to request user input, the dependencies must hold, and there has

to be a visible prompt meeting its guard. If just one declaration of
FOO meets this criterion, user input is asked. So, let us define:
FOO.promptCondition ≡∨n
i=1 (FOOi .dep ∧ FOOi .prompt ∧ FOOi .promptGuard)

To put it all together, the translation for symbol FOO is:
Translation(FOO) ≡ if FOO.selectCondition then FOO
else if FOO.promptCondition then true
else if FOO1.dep ∧

∨n1
i=1 C1i then FOO1.default

else if FOO2.dep ∧
∨n2
i=1 C2i then FOO2.default

. . .

else if FOOr .dep ∧
∨nr
i=1 Cr i then FOOr .default

else ¬FOO

5.2 Choice translation
Let us consider a choice involving n symbols, X1, X2, . . . , Xn . The
symbols inside the choice block, also called choice members, are
assumed not to be declared anywhere else3 . The semantics of the
Boolean choice is fairly straightforward: if the dependencies hold
and the choice is visible, exactly one of the choice members is true.
Otherwise, all the choice members must be false. A member of a
choicemust have a usable prompt to be considered. A choicewith no
member translates to true. Default values for the choice and selects
to choice members are ignored. For each member, Xi , let us define
the auxiliary formula Bi ≡ Xi ∧Xi .prompt∧Xi .promptGuard. The
translation for a choice C, would then be:

translation(C) ≡ if C.dep∧C.vis∧C.prompt∧C.promptGuard
∧
∨n
i=1 (Xi .prompt ∧ Xi .promptGuard) then∨n

i=1 Bi ∧
∧n
i=1
j>i

¬(Bi ∧ Bj) else
∧n
i=1 ¬Bi . The result of the trans-

lation process is a set of formulas whose conjunction provides a
logical model for the corresponding Kconfig files.

6 ONE-WAY VALIDATION OF THE PROPOSED
TRANSLATION

Figure 3 summarizes the one-way validation approach. For a Kcon-
fig translation to Boolean logic, S , a random sample of valid products
p1,p2, . . . ,pn is generated using the conf program. Then, n BDDs
are built, one for each conjunction S ∧ p1, S ∧ p2, . . . , S ∧ pn . Each
BDD is then checked to see if there is only one solution, namely
that of the corresponding product. Otherwise, the logic translation
is invalid. BDDs are described in detail in [9, 22]. There are two

Figure 3: Schema of the one-way validation approach

good reasons to use BDD technology for our validation approach:
3The interpreter would otherwise issue a warning.

A Kconfig Translation to Logic with One-Way Validation System SPLC ’19, September 9–13, 2019, Paris, France

1) BDDs do not require CNF-formulas. A BDD can be built by
feeding it formulas which do not need to be in Conjunctive Normal
Form (CNF). This is unlike SAT-solvers [7], which traditionally re-
quire them. Translation to CNF can produce a formula exponentially
longer than the original one (e.g. the translation for freetz in CNF
would requiere billions of clauses). Alternative approaches to get a
CNF formula, such as the Tseitin’s construction of an equisatisfiable
formula [35], require the introduction of a great deal of artificial
variables which impede efficiency and obscure the meaning.

2)BDD-based validation approachhelps debugging the trans-
lation. Getting the translation of a complex VM language to logic
right usually requires several iterations. When a generated product
does not validate, there are two possibilities: a) There are zero solu-
tions. b) There is more than one solution. If there are no solutions
for the BDD, there is a contradiction. In that case, the building
process can be retraced to the point in which the BDD became
false, because the number of nonterminal nodes in the BDD drops
to zero. The offending formula points to the symbol(s) or choice
that is causing the problem. If there is more than one satisfying
assignment, BDDs are more useful than SAT-solvers: In a valid
product, there is only one correct value for each variable. For that
reason, there is also only one node per variable in the BDD and for
every node, one of the children has to point to false. There also no
empty levels. It suffices to traverse the BDD, find out which nodes
violate that property, and associate them with the variables. This
way, a set of symbols whose translation is wrong is obtained, which
can be used to troubleshoot the translation.

The biggest disadvantage of BDDs (the potential for memory
exhaustion) is mitigated because instead of facing the problem head-
on and making a BDD of the full logical model, an alternative route
is taken to always build the BDD corresponding to the model and a
product to be tested. Such a BDD is known to have only one node
per variable, assuming the model is correct.

To validate the translation described in Section 5, the open-
source projects in Table 1 have been used as test-bed. These projects
are heterogeneous in the number of configs and concerning how
they use the Kconfig language, thus being a representative sample
to account for the diversity of the population of Kconfig projects.
The table also shows that the vast majority of configs were of type
bool. A thousand products for each project were generated and all
of them validated for the translation presented in the paper (i.e. the
conjunction of the model translation plus each individual product
has exactly one satisfying assignment). The debugging process al-
lowed us to discover the chaining mechanism and also the need to
include a selector’s dependencies in the translation. The code and
instructions to replicate the results have been made available in a
repository4. We also evaluated KconfigReader [21] under the same
conditions (i.e. only bool configs). KconfigReader translates all the
symbol types as opposed to only bool, but failed to build models
for busybox and uClibc due to syntax errors. For the other projects
the translation process completed successfully and the models val-
idated without any problems, although the translation involved
adding additional variables not corresponding to config definitions,
which goes in the way of later product line analysis. Interestingly,
the short snippet validation approach in [21] carried over to the big

4https://figshare.com/s/df2b0e4bc889a701f3f3

Name #Feat. % bool Kconfig2Logic** KconfigReader
Time* Valid Time* Valid

toybox 12 83.33 0.04 100% 0.03 100%
axtls 64 67.36 0.05 100% 0.05 100%
uclibc 303 87.82 1.26 100% error error
busybox 604 94.52 2.40 100% error error
freetz 6492 98.43 69.3 100% 323.8 100%

*Avg time taken to generate and test one configuration (seconds).
**Our approach

Table 1: Project validation for 1000 sample products

projects. The running times comparison shows that our translation
scales better that KconfigReader. The reason seems to be that Kcon-
figReader produces a very long translation, while our approch only
produces at most one constraint per config. For instance, for the
freetz project, KconfigReader produced 81780 contraints vs. 5373
for our approach.

To build the BDDs, the CUDD package by Fabio Somenzi was
used5. The experiments were performed on an Intel Xeon@2Ghz
running Linux. The memory requirements are very small, less than
250MB per run with the biggest model.

7 THREATS TO VALIDITY AND LIMITATIONS
The primary threat to validity of our translation is the modifica-
tion of the conf program to produce random valid products. This
modification improves the reliability of our validation procedure:
while the original conf program has an option to create random
configurations, it uses different code for generating configurations
than for configuring them. This could give rise to incompatible
results. To mitigate this problem, conf was modified with care not
to alter its intended behavior. The interpreter is designed to show
the user a list of acceptable values for boolean and tristate types.
We reprogrammed the function waiting for user input to return
a randomly chosen value among the alternatives to ensure that
generating and configuring work the same way. A limitation of the
validation is that it goes is one-way only. We make no assurances
that the translation is correct the other way around.

8 CONCLUSIONS
The translation of a VM to logic is a necessity for most automated
analysis approaches because they are built upon logic engines. This
paper has described how to translate Kconfig to logic for bool
configs, including some of its most obscure constructions, such as
config chaining and convoluted selects. We have also checked if
valid products according to a Kconfig specification remain valid
according to its logical translation for five different projects. Both
our translation and KconfigReader passed the tests. KconfigReader
is able to translate string types but our approach is more compact,
more scalable, more compatible with Kconfig varieties, and overall
clearer, since there is a one-to-one correspondence between configs
and logical variables. Future work will explain the translation of
string and tristate types.

5http://vlsi.colorado.edu/˜fabio/

https://figshare.com/s/df2b0e4bc889a701f3f3
http://vlsi.colorado.edu/~{}fabio/

SPLC ’19, September 9–13, 2019, Paris, France David Fernandez-Amoros, Ruben Heradio, Christoph Mayr-Dorn, and Alexander Egyed

REFERENCES
[1] Hai H. Wang A, Yuan Fang Li B, Jing Sun C, Hongyu Zhang D, and Jeff Pan E.

2007. Verifying feature models using OWL. Journal of Web Semantics 5 (2007),
117–129.

[2] Randall C. Bachmeyer and Harry S. Delugach. 2007. A Conceptual Graph Ap-
proach to Feature Modeling. In Conceptual Structures: Knowledge Architectures
for Smart Applications, 15th International Conference on Conceptual Structures,
(ICCS). Springer, 179–191. https://doi.org/10.1007/978-3-540-73681-3_14

[3] Don Batory. 2005. Feature models, grammars, and propositional formulas. In
9th international conference on Software Product Lines. Springer-Verlag, Rennes,
France, 7–20.

[4] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. 2010. Automated
Analysis of Feature Models 20 years Later: a Literature Review. Information
Systems 35, 6 (2010), 615–636.

[5] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wąsowski, and Krzysztof
Czarnecki. 2010. Variability modeling in the real: a perspective from the operating
systems domain. In Proceedings of the IEEE/ACM international conference on
Automated software engineering. ACM, IEEE, Lawrence, KS, USA, 73–82.

[6] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki. 2013. A Study
of Variability Models and Languages in the Systems Software Domain. IEEE
Transactions on Software Engineering 39, 12 (Dec 2013), 1611–1640.

[7] Armin Biere, Marijn J.H. Heule, Hans van Maaren, Toby, and Walsh. 2009. Hand-
book of Satisfiability. Frontiers in Artificial Intelligence and Applications, Vol. 185.
IOS Press, Amsterdam, The Netherlands, The Netherlands. 697–698 pages.

[8] Pim Van Den Broek and Ismênia Galvão. 2009. Analysis of Feature Mod-
els using Generalised Feature Trees. In Third International Workshop on Vari-
ability Modelling of Software-Intensive Systems, Seville, Spain, January 28-30,
2009. Proceedings (ICB Research Report), David Benavides, Andreas Metzger,
and Ulrich W. Eisenecker (Eds.), Vol. 29. Universität Duisburg-Essen, 29–35.
http://www.vamos-workshop.net/proceedings/VaMoS_2009_Proceedings.pdf

[9] Randal E. Bryant. 1986. Graph-based algorithms for Boolean function manipula-
tion. IEEE Trans. Comput. 8, C-35 (1986), 677–691.

[10] Krzysztof Czarnecki and Peter Chang. 2005. Cardinality-based feature modeling
and constraints: A progress report. In InternationalWorkshop on Software Factories.
ACM, 16–20.

[11] Sascha El-Sharkawy, Adam Krafczyk, and Klaus Schmid. 2015. Analysing the
Kconfig Semantics and Its Analysis Tools. In Proceedings of the ACM SIGPLAN
International Conference on Generative Programming: Concepts and Experiences
(GPCE 2015). ACM, New York, NY, USA, 45–54. https://doi.org/10.1145/2814204.
2814222

[12] Abdelrahman Osman Elfaki, Somnuk Phon-Amnuaisuk, and Chin Kuan Ho. 2008.
Knowledge Based Method to Validate Feature Models. In 12th Software Product
Line Conference (SPLC), Vol. 2. IEEE Computer Society, Los Alamitos, CA, USA,
217–225.

[13] Abdelrahman Osman Elfaki, Somnuk Phon-Amnuaisuk, and Chin Kuan Ho. 2009.
Using First Order Logic to Validate FeatureModel. In Third InternationalWorkshop
on Variability Modelling of Software-Intensive Systems, Seville, Spain, January 28-
30, 2009. Proceedings (ICB Research Report), David Benavides, Andreas Metzger,
and Ulrich W. Eisenecker (Eds.), Vol. 29. Universität Duisburg-Essen, 169–172.
http://www.vamos-workshop.net/proceedings/VaMoS_2009_Proceedings.pdf

[14] David Fernandez-Amoros, Ruben Heradio, Carlos Cerrada, Enrique Herrera-
Viedma, and J Cobo Manuel. 2017. Towards Taming Variability Models in the
Wild. In New Trends in Intelligent Software Methodologies, Tools and Techniques:
Proceedings of the 16th International Conference SoMeT_17, Vol. 297. IOS Press,
Amsterdam, The Netherlands, 454.

[15] David Fernandez-Amoros, Ruben Heradio, and Jose Antonio Cerrada. 2009. In-
ferring Information from Feature Diagrams to Product Line Economic Models.
In Proceedings of the 13th International Conference on Software Product Lines.
Carnegie Mellon University, Pittsburgh, PA, USA, 41–50.

[16] Rohit Gheyi, Tiago Massoni, and Paulo Borba. 2006. A theory for feature models
in alloy. In Proceedings of the ACM SIGSOFY First Alloy Workshop. ACM, 71–80.

[17] Stefan Hengelein and Daniel Lohmann. 2015. Analyzing the Internal Consistency
of the Linux KConfig Model. Master’s thesis. University of Erlangen, Dept. of
Computer Science, 2015.

[18] Ruben Heradio, David Fernandez-Amoros, Jose A. Cerrada, and Ismael Abad.
2013. A Literature Review on Feature Diagram Product Counting and Its Usage
in Software Product Line Economic Models. International Journal of Software
Engineering and Knowledge Engineering 23, 08 (2013), 1177–1204.

[19] Ruben Heradio, Hector Perez-Morago, David Fernandez-Amoros, Francisco Javier
Cabrerizo, and Enrique Herrera-Viedma. 2016. A bibliometric analysis of 20 years
of research on software product lines. Information and Software Technology 72
(2016), 1 – 15.

[20] Kyo Kang, Sholom Cohen, James Hess, William Novak, and Spencer Peterson.
1990. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical
Report CMU/SEI-90-TR-21. Software Engineering Institute.

[21] Christian Kästner. 2017. Differential Testing for Variational Analyses: Experience
from Developing KConfigReader. CoRR abs/1706.09357 (2017). arXiv:1706.09357

[22] Donald Knuth. 2009. The Art of Computer Programming, Volume 4, Bitwise Tricks
& Techniques; Binary Decision Diagrams. Pearson Education, Reading, Mas-
sachusetts.

[23] Mike Mannion. 2002. Using First-Order Logic for Product Line Model Valida-
tion. In 2nd International Conference on Software Product Lines. Springer-Verlag,
London, UK, 176–187.

[24] Mike Mannion and Javier Camara. 2004. Theorem proving for product line
model verification. Lecture Notes in Computer Science 3014 (2004), 211–224.
https://doi.org/10.1007/978-3-540-24667-1_16

[25] Marcilio Mendonca, Andrzej Wasowski, and Krzysztof Czarnecki. 2009. SAT-
based analysis of feature models is easy. In Proceedings of the 13th International
Software Product Line Conference. Carnegie Mellon University, 231–240.

[26] Camille Salinesi, Colette Roll, and Raúl Mazo. 2009. Vmware: Tool support for
automatic verification of structural and semantic correct- ness in product line
models. (2009), 173–176 pages. http://www.vamos-workshop.net/proceedings/
VaMoS_2009_Proceedings.pdf

[27] Steven She. 2008. Feature model mining. Master’s thesis. University of Waterloo.
[28] Steven She. 2013. Feature model synthesis. Ph.D. Dissertation. University of

Waterloo.
[29] Steven She and Thorsten Berger. 2010. Formal semantics of the Kconfig language.

Technical Report. University of Waterloo.
[30] Jing Sun and Yuan Fang Li. 2005. Formal Semantics and Verification for Feature

Modeling. Technical Report.
[31] Reinhard Tartler. 2013. Mastering Variability Challenges in Linux and Related

Highly-Configurable System Software. Ph.D. Dissertation. Friedrich-Alexander-
Universität Erlangen-Nürnberg.

[32] Reinhard Tartler, Julio Sincero, Christian Dietrich, Wolfgang Schröder-Preikschat,
and Daniel Lohmann. 2012. Revealing and repairing configuration inconsisten-
cies in large-scale system software. International Journal on Software Tools for
Technology Transfer 14, 5 (2012), 531–551.

[33] P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés, andM. Toro. 2008. Automated
error analysis for the agilization of feature modeling. Journal of Systems and
Software 81, 6 (jun 2008), 883–896. https://doi.org/10.1016/j.jss.2007.10.030

[34] P Trinidad, D Benavides, and A Ruiz-Cortés. 2006. A first step detecting incon-
sistencies in feature models. In CAiSE Short Paper Proceedings.

[35] G. S. Tseitin. 1983. On the Complexity of Derivation in Propositional Calculus.
Springer Berlin Heidelberg, Berlin, Heidelberg, 466–483.

[36] Thomas von der Massen and Horst Lichter. 2004. RequiLine: A Requirements
Engineering Tool for Software Product Lines. Lecture Notes in Computer Science
3014 (2004), 168–180. https://doi.org/10.1007/978-3-540-24667-1_13

[37] Martin Walch, Rouven Walter, and Wolfgang Küchlin. 2015. Formal Analy-
sis of the Linux Kernel Configuration with SAT Solving. In 17th International
Configuration Workshop. University of Helsinki, Helsinki, Finland, 131–137.

[38] Hai Wang, Yuan Fang Li, Jing Sun, Hongyu Zhang, and Jeff Pan. 2005. A semantic
web approach to feature modeling and verification. In In Workshop on Semantic
Web Enabled Software Engineering. 44.

[39] Haiyan Zhao Wei Zhang, Hua Yan and Zhi Jin. 2008. A bdd-based approach to
verifying clone-enabled feature models’ constraints and customization. Lecture
Notes in Computer Science 5030 (2008), 186–199.

[40] J. White, D. C. Schmidt, D. Benavides, P. Trinidad, and A. Ruiz-Cortés. 2008.
Automated Diagnosis of Product-Line Configuration Errors in Feature Models.
In Proc. 12th Int. Software Product Line Conf. IEEE, 225–234. https://doi.org/10.
1109/SPLC.2008.16

[41] Hua Yan, Wei Zhang, Haiyan Zhao, and Hong Mei. 2009. An Optimization
Strategy to Feature Models’ Verification by Eliminating Verification-Irrelevant
Features and Constraints. In Formal Foundations of Reuse and Domain Engineering,
Stephen H. Edwards and Gregory Kulczycki (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 65–75.

[42] Lamia Abo Zaid, Frederic Kleinermann, and Olga De Troyer. 2009. Applying
semantic web technology to feature modeling. In Proceedings of the 2009 ACM
symposium on Applied Computing. ACM, 1252–1256.

[43] Christoph Zengler and Wolfgang Küchlin. 2010. Encoding the Linux kernel con-
figuration in propositional logic. In Proceedings of the 19th European Conference
on Artificial Intelligence (ECAI 2010) Workshop on Configuration, Vol. 2010. IOS
Press, Amsterdam, The Netherlands, 51–56.

[44] Wei Zhang, Hong Mei, and Haiyan Zhao. 2006. Feature-driven requirement
dependency analysis and high-level software design. Requirements Engineering
11 (2006), 205–220. https://doi.org/10.1007/s00766-006-0033-x

[45] Wei Zhang, Haiyan Zhao, and Hong Mei. 2004. A propositional logic-based
method for verification of feature models. In International Conference on Formal
Methods and Software Engineering. Springer, 115–130.

https://doi.org/10.1007/978-3-540-73681-3_14
http://www.vamos-workshop.net/proceedings/VaMoS_2009_Proceedings.pdf
https://doi.org/10.1145/2814204.2814222
https://doi.org/10.1145/2814204.2814222
http://www.vamos-workshop.net/proceedings/VaMoS_2009_Proceedings.pdf
http://arxiv.org/abs/1706.09357
https://doi.org/10.1007/978-3-540-24667-1_16
http://www.vamos-workshop.net/proceedings/VaMoS_2009_Proceedings.pdf
http://www.vamos-workshop.net/proceedings/VaMoS_2009_Proceedings.pdf
https://doi.org/10.1016/j.jss.2007.10.030
https://doi.org/10.1007/978-3-540-24667-1_13
https://doi.org/10.1109/SPLC.2008.16
https://doi.org/10.1109/SPLC.2008.16
https://doi.org/10.1007/s00766-006-0033-x

	Abstract
	1 Introduction
	2 Introducing Kconfig
	3 Clarifying Kconfig semantics
	3.1 Config chaining
	3.2 Decision overriding with Select
	3.3 Select in chained configs
	3.4 Select transitiveness

	4 Related Work
	5 Translation to Boolean Logic
	5.1 Config translation
	5.2 Choice translation

	6 One-way validation of the proposed translation
	7 Threats to validity and Limitations
	8 Conclusions
	References

